Search Results - machine+learning+modeling

6 Results Sort By:
Methods and Systems for Low-Cost Medical Image Annotation Using Non-experts (Case No. 2025-108)
Summary: UCLA researchers in the Department of Electrical and Computer Engineering have developed an AI-based interface designed to enable individuals without specialized training to identify arthritis in medical imaging. Background: The use of artificial intelligence (AI) for medical imaging analysis holds great promise for the future of healthcare....
Published: 7/23/2025   |   Inventor(s): Xiang Chen, Youngseung Jeon, Christopher Hwang
Keywords(s): 3D tissue imaging, AI-guided diagnostics, AI-guided medical imaging, AI-guided medical intervention, arthritis, Artifical Intelligence (Machine Learning, Data Mining), Artificial Intelligence, artificial intelligence algorithms, artificial intelligence augmentation, artificial intelligence/machine learning models, Artificial Neural Network, bioimaging, Computer-Aided Diagnosis, computer-aided radiology, Diagnostic Markers & Platforms, Diagnostic Test, diagnostics, generative artificial intelligence, Image Analysis, Image Resolution, Imaging, infrared thermal imaging, Machine Learning, machine learning modeling, machine perception, Magnetic Resonance Imaging Medical Physics, Magnetic Resonance Imaging Pathology, Medical artificial intelligence (AI), Medical diagnostics, Medical Imaging, Microscopy And Imaging, non-invasive imaging, osteoarthritis, radial MRI, radiologic imaging, Radiology, Radiology / Radiomitigation, radiosurgery
Category(s): Software & Algorithms, Software & Algorithms > AI Algorithms, Software & Algorithms > Artificial Intelligence & Machine Learning, Software & Algorithms > Digital Health, Software & Algorithms > Image Processing, Life Science Research Tools, Life Science Research Tools > Lab Equipment, Life Science Research Tools > Microscopy And Imaging, Medical Devices, Medical Devices > Medical Imaging, Medical Devices > Monitoring And Recording Systems, Therapeutics, Therapeutics > Musculoskeletal Disease, Therapeutics > Radiology
Subgraph Matching for High-Throughput DNA-Aptamer Secondary Structure Classification and Machine Learning Interpretability (Case No. 2025-104)
Intro Sentence: UCLA researchers in the Department of Mathematics have developed machine learning methods to rapidly identify novel aptamer sequences for target binding to accelerate highly-accurate diagnostic and therapeutic development. Background: Aptamers are single-stranded nucleotide polymers that bind with high affinity to targets such as...
Published: 7/22/2025   |   Inventor(s): Andrea Bertozzi, Anne Andrews, Matthew Tyler, Paolo Climaco, Noelle Mitchell
Keywords(s): Advanced Computing / AI, advanced computing methods, Aptamers, Artifical Intelligence (Machine Learning, Data Mining), artificial intelligence/machine learning models, bioinformatics pipeline, cancer target, clustering, computational efficiency, computational efficiency and analysis, design software, DNA clustering, DNA oligomer, DNA Sequencing, Drug, Drug Delivery, Drug Development, Drug Discovery, drug screening, high throughput, high throughput assays, high throughput testing, high-throughput analysis, High-Throughput Screening, interpretability, pipeline, large-scale parallelization, Machine Learning, machine learning modeling, motif structures, open source, open source code, OpenAI, Pharmaceutical Drug, protein classification, secondary structure, SELEX, sequences of interest, single strand DNA sequences, Software, Software & Algorithms, Software Development Tools, Software-enabled learning, subgraph matching, target binding, target detection, Targeted Therapy, Targets And Assays, tissue targeting accuracy
Category(s): Software & Algorithms, Software & Algorithms > AI Algorithms, Software & Algorithms > Artificial Intelligence & Machine Learning, Software & Algorithms > Data Analytics, Life Science Research Tools, Life Science Research Tools > Research Methods, Life Science Research Tools > Screening Libraries, Platforms, Platforms > Drug Delivery, Diagnostic Markers > Targets And Assays, Diagnostic Markers, Software & Algorithms > Bioinformatics
Copyright: Large Language Models for Electronic Health Records (Case No. 2024-216)
Intro Sentence: UCLA researchers from the Department of Computational Medicine have developed a novel model for tabulating electronic health records. Background: Electronic Health Records (EHR) provide healthcare systems with insights into health histories. Machine learning models have been developed to use EHR for inference tasks based on specific...
Published: 2/14/2025   |   Inventor(s): Jeffrey Chiang, Simon Lee
Keywords(s): Artifical Intelligence (Machine Learning, Data Mining), clinical decision support, EHR, EHR integration, electronic health records (EHR), Hospital Systems And Devices, lab results analysis, large language model (LLNMs), Machine Learning, machine learning modeling, patient questionnaire, personalized medicine, predictive analytics, specialist referral
Category(s): Software & Algorithms, Software & Algorithms > Artificial Intelligence & Machine Learning, Software & Algorithms > Data Analytics, Software & Algorithms > Programs, Medical Devices, Medical Devices > Hospital Systems
Deep Neural Networks for Real-Time Non-invasive Continuous Peripheral Oxygen Saturation Monitoring (Case No. 2024-227)
Summary: UCLA researchers in the Department of Anesthesiology have developed a novel pulse oximetry methodology utilizing deep neural networks for non-invasive monitoring. Background: In the US alone, over 5 million patients are admitted to the ICU for oxygen saturation monitoring. They, as well as the more than 15 million patients undergoing surgery,...
Published: 2/14/2025   |   Inventor(s): Sungsoo Kim, Sohee Kwon, Mia Markey, Alan Bovik, Akos Rudas, Ravi Pal, Maxime Cannesson
Keywords(s): Artifical Intelligence (Machine Learning, Data Mining), Blood Pressure, cardiovascular monitoring, central venous pressure (CVP), Continuous blood pressure monitoring, critical care, Deep learning-based sensing, deep-learning analysis algorithms, heart failure, hemodynamic monitoring, machine learning modeling, Monitoring (Medicine), neural network, non-invasive monitoring, Oxygen, Oxygen Saturation, pulmonary arterial pressure (PAP), Swan-Ganz catheter
Category(s): Medical Devices > Monitoring And Recording Systems, Software & Algorithms > Digital Health
A Programming Language to Execute Biological Experiments (Command Line Biology/Biowrapper) (Case No. 2024-049)
Intro Sentence: UCLA researchers in the Department of Molecular and Medical Pharmacology have developed a programming language to automate biological experiments. Background: Manual labor is a common bottleneck in biological sciences, with automation technology still being unobtainable and impractical for most scientists in biomedical research....
Published: 5/8/2025   |   Inventor(s): Robert Damoiseaux, Michael Mellody, Ronan Bennett, Alejandro Huerta, Rutu Shah
Keywords(s): Artifical Intelligence (Machine Learning, Data Mining), Artificial Intelligence, artificial intelligence augmentation, Artificial Neural Network, artificial-intelligent materials, Automation, generative artificial intelligence, Machine Learning, machine learning modeling, Medical artificial intelligence (AI), Programmable Logic Device
Category(s): Software & Algorithms, Software & Algorithms > Data Analytics, Software & Algorithms > Programs, Software & Algorithms > Artificial Intelligence & Machine Learning, Software & Algorithms > Image Processing, Life Science Research Tools, Life Science Research Tools > Research Methods
Copyright: Machine Learning-Assisted Design of High Power Laser Systems (Case No. 2024-067)
Summary: UCLA Researchers from the Department of Electrical and Computer Engineering have developed a novel software leveraging advanced machine learning methods to simulate and design high-power laser systems. Background: High-power laser systems are crucial to many established industries and in cutting edge research. These systems can be used in...
Published: 2/14/2025   |   Inventor(s): Sergio Carbajo, Jack Hirschman, Randy Lemons
Keywords(s): Artifical Intelligence (Machine Learning, Data Mining), Artificial Intelligence, artificial intelligence augmentation, Artificial Neural Network, artificial-intelligent materials, efficient laser design, Electronics & Semiconductors, Electro-Optics, high-powered laser systems, Laser, lasers, Lens (Optics), linear optics, machine learning modeling, Medical artificial intelligence (AI), non-linear optics, Optical Communication , Optical computing, optical implementation, Optics, parameter sweeping, Physics simulation, precision engraving, precision welding, reverse engineered optical system, Semiconductor, Semiconductor Device, Semiconductor Device Fabrication, start to end optics design
Category(s): Software & Algorithms, Software & Algorithms > Artificial Intelligence & Machine Learning, Electrical, Electrical > Instrumentation, Optics & Photonics, Optics & Photonics > Lasers