Search Results - immunoassay+sense+(molecular+biology)

2 Results Sort By:
Multi-Particle System for Capture and Detection of Cellular and Molecular Analytes (Case No. 2025-267)
Summary: UCLA researchers in the Department of Bioengineering have developed a novel multi-particle system that selectively confines cells and molecular reactions within cavities formed by interacting particles. Background: Screening and selecting cells with specific, beneficial traits has become a vital process in using cell-derived products...
Published: 7/29/2025   |   Inventor(s): Dino Di Carlo, Alyssa Arnheim, Michael Mellody, Yuta Nakagawa, Lily Shang
Keywords(s): Assay, B Cell, barcode, Bioassay, biological assays, Biomarker, biomarkers, Biomaterial, capping particles, CAR-T cell platform, CAR-T cell therapy, cavities, cavity-containing particles, Cell and tissue culture, cell encapsulation, cell engineering, cell imaging, cell mapping, cell sorting, cell type identification, cell-based therapy, centrifugation, confinement, Diagnostic Platform Technologies (E.G. Microfluidics), Digital Microfluidics, Drug, Drug Delivery, Drug Discovery, drug screening, high throughput, high throughput assays, high throughput testing, high-throughput analysis, High-Throughput Screening, Immunoassay, Immunoassay Sense (Molecular Biology), Microfluidics, Microfluidics And Mem's, Microfluidics Nanosphere, microparticles, moieties, Nanoparticle, single cell analysis, single cell analysis and testing, Single cell data, single-cell resolution, single-cell trapping
Category(s): Life Science Research Tools, Life Science Research Tools > Cell Counting And Imaging, Life Science Research Tools > Lab Equipment, Life Science Research Tools > Microscopy And Imaging, Life Science Research Tools > Microfluidics And Mems, Medical Devices, Platforms
Stain-Free, Rapid, and Quantitative Viral Plaque Assay Using Deep Learning and Holography (Case No. 2022-326)
Intro Sentence: UCLA researchers in the Department of Electrical and Computer Engineering have developed a rapid and stain-free quantitative assay using lens-free holography and deep learning to efficiently and cost-effectively determine the presence of viral plaque-forming units (PFUs) in samples. Background: A broad range of viruses have caused...
Published: 2/14/2025   |   Inventor(s): Aydogan Ozcan, Yuzhu Li, Tairan Liu
Keywords(s): Antiviral Drug, Artifical Intelligence (Machine Learning, Data Mining), Assay, Bioassay, Computer Aided Learning, Diagnostic Markers & Platforms, Diagnostic Platform Technologies (E.G. Microfluidics), Diagnostic Test, Digital Holography, Electrical, Electrical Brain Stimulation, Electrical Breakdown, Electrical Engineering, Electrical Impedance, Electrical Load, Electrical Load Equation Of State, Electrical Resistance And Conductance, Electrical Resistivity And Conductivity, Holography, Immunoassay, Immunoassay Sense (Molecular Biology), Lentivirus Viral Vector, Machine Learning, Machine Learning Autonomous Car Gradient Descent, Machine Learning Pain Management, Machine Learning Particulates Global Climate Model, Network Analysis (Electrical Circuits), Perceptual Learning, Plasmid Trabecular Meshwork Aqueous Humour Viral Vector, Targets And Assays, Transcutaneous Electrical Nerve Stimulation, Transfection Viral Vector, Unsupervised Learning , Viability Assay, Viral Delivery Systems, Viral Envelope, Viral Load
Category(s): Diagnostic Markers, Diagnostic Markers > Targets And Assays, Electrical, Life Science Research Tools, Life Science Research Tools > Research Methods, Life Science Research Tools > Other Reagents, Software & Algorithms > Artificial Intelligence & Machine Learning