Search Results - quantum+incompressible+fluid

3 Results Sort By:
A General Cation-Exchange Approach to Magnetic Intercalation Superlattices (Case No. 2025-9A1)
Summary: UCLA researchers in the Department of Chemistry have developed a general cation-exchange approach for tunable magnetic intercalation superlattices. Background: Layered materials are crucial for engineering quantum and magnetic phenomena at the atomic scale. Magnetic intercalation superlattices, a type of layered materials, enable tunable...
Published: 7/24/2025   |   Inventor(s): Xiangfeng Duan, Yu Huang, Jingxuan Zhou
Keywords(s): Advanced Computing / AI, advanced packaging, Cation exchange, doping control, Fabrication Technologies, ferromagnetic semiconductor, layered materials, magnetic coupling, magnetic intercalation superlattices, quantum communication, Quantum Computer, quantum computing materials, Quantum Dot, quantum error correction (QEC), quantum incompressible fluid, quantum key, quantum network, quantum processing, quantum processor, room-temperature superconductivity, spin textures, spintronics, trapped ion quantum processor, tunable ferromagnetism, Van der Waals, Van Der Waals Force, VIN group metals
Category(s): Materials, Materials > Nanotechnology, Materials > Functional Materials, Materials > Semiconducting Materials, Materials > Fabrication Technologies, Materials > Metals, Optics & Photonics
A New ADC Architecture (Case No. 2023-276)
Summary: UCLA researchers in the Department of Electrical and Computer Engineering have developed a novel analog-digital conversion (ADC) Architecture that achieves high-speed, high-resolution signal conversion with reduced power consumption and increased linearity. Background: High-speed, high-resolution analog-digital converters (ADCs) are what...
Published: 2/14/2025   |   Inventor(s): Utkarsh Sharma, Behzad Razavi
Keywords(s): Computer Architecture, Consumer Electronics, Digital Electronics, Digital Signal Processing, Integrated Circuit, processor design, quantum communication, Quantum Computer, Quantum Dot, quantum error correction (QEC), quantum incompressible fluid, quantum key, quantum network, quantum processing, quantum processor, Signal Processing, trapped ion quantum processor
Category(s): Electrical > Signal Processing, Electrical > Computing Hardware
Method and System for Using Quantum Incompressible Fluid to Achieve Fusion from Cavitation (UCLA Case No. 2022-110)
Summary: UCLA researchers in the Department of Physics and Astronomy have developed a novel system and method to achieve thermonuclear fusion in a laboratory scale device. Background: Many energy experts believe that nuclear has a key role to play as a clean, stable, and readily-available source of power, despite a contentious history. Nuclear power...
Published: 7/17/2025   |   Inventor(s): Seth Putterman, John Koulakis
Keywords(s): acoustics, cavitation, clean energy, Fermi exclusion, Fermi fluid, fusion, fusion cavitation, incompressible fluid, molten salt, nuclear fusion, quantum incompressible fluid, sonoluminescence, thermal fusion, thermonuclear fusion, zero-carbon emission power
Category(s): Electrical, Electrical > Instrumentation, Materials, Materials > Functional Materials, Energy & Environment > Energy Generation