Search Results - cell+proliferation

2 Results Sort By:
An Acoustic Device for Large Area Single Cell Trapping and Selective Release (Case No. 2025-047)
Summary: UCLA researchers in the Department of Mechanical and Aerospace Engineering have developed an acoustic microfluidic platform that offers a cost-effective and practical approach for handling individual cells at the microscale. Background: Single-cell manipulation is essential for understanding cellular behavior, disease progression, and therapeutic...
Published: 1/13/2026   |   Inventor(s): Pei-Yu Chiou, Xiang Zhang
Keywords(s): acoustic microfluidics, acoustic potential wells, acoustics, cell proliferation, cell viability, Diagnostic Platform Technologies (E.G. Microfluidics), diagnostic platforms, Digital Microfluidics, disposable microfluidic platforms, high throughput, high throughput assays, high throughput testing, High-Content Screening, high-throughput cell handling, low-cost fabrication, MEMS, MEMS metasurface, micro-electromechanical systems (MEMS), Microfluidics, Microfluidics And Mem's, Microfluidics Dielectrophoresis, Microfluidics Multi-Band Device, Microfluidics Nanosphere, near-infrared laser, photolithography-free fabrication, research instrumentation, scalable platform, single cell analysis, single cell analysis and testing, Single cell data, single-cell handling, single-cell manipulation, single-cell resolution, single-cell trapping
Category(s): Chemical, Chemical > Chemical Processing & Manufacturing, Chemical > Instrumentation & Analysis, Diagnostic Markers, Diagnostic Markers > Targets And Assays, Diagnostic Markers > Immunology, Diagnostic Markers > Cancer, Life Science Research Tools, Life Science Research Tools > Lab Equipment, Life Science Research Tools > Microfluidics And Mems, Life Science Research Tools > Research Methods, Mechanical, Mechanical > Instrumentation, Platforms, Platforms > Diagnostic Platform Technologies
Mitotic Figures Electronic Counting Application for Surgical Pathology
Abstract: Cancer diagnosis depends on the assessment of patient biopsies to determine tumor type, grading, and stage of malignancy. Pathologists visually review specimens and count mitotic figures (MF) in a variety of cancer types to help gauge aggressiveness, guide treatment, and inform patient prognosis. Current technology for recording MF counts...
Published: 4/22/2025   |   Inventor(s): Robert Simpson, Munish Puri, Stephen Hewitt
Keywords(s): cell proliferation, COUNTING, ELECTRONIC, MATLAB, Matrix Laboratory, MF, MICROSCOPY, Mitotic Figures, PATHOLOGY, Simpson, SURGICAL
Category(s): Collaboration Sought > Collaboration, Collaboration Sought > Licensing, Application > Software / Apps, TherapeuticArea > Oncology