Fibroblasts reprogrammed into tissue-like patch including functional cardiomyocyte, endothelial, smooth muscle and pericyte cells for treatment of cardiac diseases.
Ischemic heart disease or coronary artery disease is the single leading cause of death and disability worldwide. Mycoardial function is sensitive to ischemia, which can result in damage to tissue. Cell therapy is a treatment option for myocardial regeneration, however low efficiency for generating cardiomyocytes, low retention following cell transplantation, immunologic incompatibility, and tumor formation limit its clinical application. Stem cell technologies offer promise for myocardial regeneration, but the inability to generate functional cardiomyocytes versus non function smooth muscle cells remains the largest limitation.
Researchers at Emory University have developed a heart patch capable of reprograming fibroblasts into cardiac tissue cells. This patch may be placed on the heart to help regenerate tissue and heal the heart following ischemia. A combination of miRNA, ascorbic acid, and bone morphogenic protein 4 (BMP4) simultaneously reprogrammed mouse dermal fibroblasts into cardiomimetic tissues (CMT) including functional cardiomyocyte, endothelial, smooth muscle, and pericyte cells. The CMT may be used as a platform in cell therapy for cardiac diseases, investigations of disease processes and modeling, or testing various drugs.
In vivo study in mouse model completed.
Publication: Cho, J. et al. Circulation. 2014; 130:A15412