A COVID-19 diagnostic approach, utilizing a SARS-CoV-2 binding biosensor, that allows for real-time virus detection, without the need for sample processing, ultimately leading to population-level surveillance, outbreak tracking, reduced healthcare costs, improved treatment outcomes, and saved lives.
Solution: The de la Fuente lab has created a low-cost, pocket-sized biosensor that is capable of diagnosing COVID-19. The sensor, which costs 7¢ to produce, is a printed circuit-board electrode that can diagnose SARS-CoV-2 infected samples in real time. The device can be implemented on a large-scale or connected to a smartphone to enable personalized, viral detection.
Technology Overview: The biosensor’s electrode is functionalized by anchoring human Angiotensin Converting Enzyme 2 (ACE2), the host target of SARS-CoV-2, to the surface. A small saliva sample (2-10 μL) is transferred to the device. The selective binding between ACE2 and the spike protein of SARS-CoV-2 is measured through electrochemical impedance spectroscopy (EIS) and detected using a potentiostat. Variations in the resulting signal are used to obtain qualitative and quantitative results for the diagnosis of COVID-19. This versatile technology has the potential to be modified and applied in the diagnosis of other viral infections. The novel diagnostic device can detect the SARS-CoV-2 virus within 4 minutes, a vast improvement on the current state-of-the-art which has a detection time of 30 minutes. Ongoing studies have demonstrated its powerful diagnostic capabilities, achieving 97% accuracy (96% sensitivity, 100% specificity) in detecting SARS-CoV-2, when compared to RT-qPCR results. Additional efforts are being made to incorporate the sensor into protective face masks for continuous infection monitoring.
Figure: (A) Functionalization of electrodes with ACE2 (B) Virus present in samples can be detected by the interaction of its spike protein with ACE2 (C) Samples are added to the surface of the electrode and impedimetric measurements determine whether the samples are infected.
Advantages:
Stage of Development: Bench Prototype
Intellectual Property: Provisional Filed
Reference Media:
Desired Partnerships:
Docket # 21-9515