Search Results - bedside+decisions

2 Results Sort By:
Method and Apparatus for Segmentation of Dense MR Images Using Deep Learning with Domain Adaptation (Case No. 2025-208)
Summary: UCLA researchers from the Department of Radiological Sciences have developed a deep learning-based segmentation framework that enables fully automated and reproducible analysis of left ventricular (LV) function in Displacement Encoding with Stimulated Echoes (DENSE) MRI. Background: Myocardial strain is a key metric for analyzing how much...
Published: 8/15/2025   |   Inventor(s): Xiaodong Zhong, Siyue Li, Kim-Lien Nguyen
Keywords(s): acute myocardial infarction, adjustable mount, aneurysm drainage, automatic leveling, bedside decisions, blood pressure monitoring, cardiac cycle, Cardiac Electrophysiology, Cardiac failure, Cardiac Magnetic Resonance Imaging, Cardiac MRI, Cardiovascular, Cardiovascular Disease, Cardiovascular Disease Nephropathy, cardiovascular diseases, cardiovascular monitoring, cerebrospinal fluid (CSF) drainage, Cine MRI, clamp, critical-care, CSF drainage, Deep learning MRI, DENSE MRI, laser alignment, Left ventricular segmentation, lumbar drains, Motion analysis, MRI, multiparametric MRI (mpMRI), Myocardial strain, non-invasive cardiac monitoring, operator variability, passive reflective target, phlebostatic axis measurement, Pseudo-labeling, radial MRI, Segment Anything Model (SAM), self-leveling system, transducer alignment, Unsupervised domain adaptation (UDA)
Category(s): Medical Devices > Cardiac, Electrical > Imaging, Software & Algorithms > AI Algorithms, Software & Algorithms > Artificial Intelligence & Machine Learning, Software & Algorithms > Image Processing, Therapeutics > Cardiovascular, Therapeutics > Radiology, Medical Devices > Medical Imaging > MRI, Medical Devices > Medical Imaging
A Compact Alignment Tool for Accurate Hemodynamic Monitoring: CardioAxis (Case No. 2025-294)
Summary: UCLA Biodesign researchers have created a laser-powered, self-leveling device that enables precise intracranial pressure monitoring and accurate phlebostatic axis measurement for hemodynamic monitoring. Background: Hemodynamic monitoring is crucial for measuring the delivery of blood and oxygen throughout the body and provides invaluable...
Published: 8/15/2025   |   Inventor(s): Sneha Shaha, Michael Malig, Sukhneet Dhillon
Keywords(s): adjustable mount, aneurysm drainage, arterial blood pressure (ABP), automatic leveling, bedside decisions, blood flow management, Blood Pressure, blood pressure monitoring, central venous pressure (CVP), cerebrospinal fluid (CSF) drainage, clamp, Continuous blood pressure monitoring, critical-care, CSF drainage, hemodynamic monitoring, Hemodynamics, intracranial pressure, laser alignment, lumbar drains, operator variability, passive reflective target, phlebostatic axis measurement, pressure sensitive, pulmonary arterial pressure (PAP), self-leveling system, transducer alignment
Category(s): Medical Devices, Medical Devices > Hospital Systems, Medical Devices > Surgical Tools