Inteum Company
Links
seedsprint
Visible Legacy
RSS
News & Resources
Inteum Company News
Inteum Library
Subscribe
Transformation-Associated Recombination (TAR) Cloning
Case ID:
TAB-1316
Web Published:
12/6/2022
Transformation-Associated Recombination (TAR) cloning in yeast is a unique method for selective isolation of large chromosomal fragments or entire genes from complex genomes without the time-consuming step of library construction.
1
The technique involves homologous recombination during yeast spheroplast transformation between genomic DNA and a TAR vector that has short (approximately 60bp) 5’ and 3’ gene targeting sequences (hooks). Further, because up to 15% sequence divergence does not prevent recombination in yeast, TAR cloning is highly efficient for isolation of gene homologs and synthenic regions. Using this technology, chromosomal regions up to 250kb can be rescued in yeast as circular YACs within 3-5 working days.
.
NIH researchers Drs. Larionov, Kouprina and Resnick have championed the use of this technology and TAR cloning has been used to efficiently isolate haplotypes, gene families
4
as well as genomic regions which are not present in existing BAC libraries. Known mutations and new modifications, including point mutations, deletions and insertions, can easily be introduced into DNA fragments hundreds of kilobases in size without introducing any unwanted alterations. The modified DNAs can then be tested functionally in mammalian cells and transgenic mice. TAR has also been used for structural biology studies, long-range haplotyping, evolutionary studies, centromere analysis and analysis of other regions which cannot be cloned by a routine technique based on in vitro ligation.
5
In particular, construction of human artificial chromosome vectors and the combining of a HAC vector with a gene of interest can be effectively performed using the TAR methodology. Human genes isolated by TAR for expression in HACs include HPRT (60kb), BRCA1 (84kb), BRCA2 (90kb), PTEN (120kb), hTERT (60kb), KA11 (200kb), ASPM (70kb), SPANX-C (83kb) among others. TAR is a flexible and efficient means for employing in vivo recombination in yeast in order to clone entire genomic loci which can then be used for structural and functional analysis and for expression in HAC vectors for a variety of uses including for potential use in gene therapy.
The TAR cloning portfolio, including methods of use and vectors, is available for licensing and will be of direct use to those using a functional genomics approach in their work.
Patent Information:
Title
App Type
Country
Serial No.
Patent No.
File Date
Issued Date
Expire Date
Direct Link:
https://canberra-ip.technologypublisher.com/tech/Transformation-Associated_Re combination_(TAR)_Cloning
Keywords:
ACXXXX
AXXXXX
GDXXXX
GXXXXX
ICXXXX
IXXXXX
Bookmark this page
Download as PDF
For Information, Contact:
Vidita Choudhry
Technology Development Specialist
NIH Technology Transfer
301-594-4095
vidita.choudhry@nih.gov