Invention Summary: There is an urgent national and international need for new classes of antibacterial agents effective against bacterial pathogens resistant to current antibacterial agents. Myxopyronin (Myx) is a microbially produced antibiotic that inhibits bacterial RNA polymerase through a novel binding site and novel mechanism. Rutgers researchers defined the binding site, mechanism, and structural basis of inhibition by Myx. Rutgers researchers then performed structure-based design of novel Myx analogs, synthesized and evaluated >600 novel proprietary Myx analogs comprising three related chemical scaffold families (PYs, APYs, and APPs), and identified compounds having improved in vitro and in vivo antibacterial activities, improved in vitro and in vivo pharmacological properties, and scalable syntheses. Our current lead molecule APY 281 exhibits potent in vitro activity against Gram-positive bacteria and some Gram negative bacteria--including drug-resistant and multi-drug-resistant strains--and exhibit potent in vivo activity in a mouse methicillin-resistant Staphylococcus aureus (MRSA) infection model with either intravenous dosing or oral dosing. In the presence of an outer-membrane-disruptor serving as "potentiator," APY 281 exhibits potent in vitro activity against additional Gram-negative bacteria, including Pseudomonas aeruginosa, Acinetobacter baumannii, Klebsiella pneumoniae, and Escherichia coli--including colistin-resistant mcr-1 strains of E. coli--and exhibit potent in vivo activity in a mouse P. aeruginosa infection model with intravenous dosing. Advantages:
Primary Indications:
Intellectual Property & Development Status: