A nematic liquid crystal system functionalized with colloidal microbots.
Problem:
Particle motion is of great interest for designing materials that depend on the particle behavior to exhibit a specific functionality. Elastic colloids are useful for the development of functional materials for particle manipulation. Nematic liquid crystals are fluid, like liquids, but also have well-defined structural organization, like crystals. Embedding colloids in these materials provides strong control over the particle motion and ensures a smooth elastic energy field for the particles. Current techniques have similarly tried to alter the energy landscape for particles in colloid-nematic crystal systems, but fail to robustly control the particles, and either do not solicit a response or drastically change the crystal configuration.
Solution:
The researchers envision controllable, reconfigurable liquid/crystal systems. To achieve this innovation the inventors leverage surface features in boundary walls that cause unique boundary conditions that can control the movement and action of microbots within the system. These colloidal systems and microbots can be fabricated for specific application requirements.
Figures: (a)Elastic energy field and the resulting forces for colloids near the wall in a Saturn ring configuration (c) Schematic of the experimental setup (N denotes rubbing direction) (f + g) A magnetic particle with a Saturn ring defect, placed near a hill, with wall to wall separation (yellow) 60 μm and (blue) 42 μm
Applications:
Advantages:
Stage of Development:
Intellectual Property:
Patent Pending
Reference Media:
Luo, Y et al; Nat Commun 2018 Sept 21, 9(1): 3841.
Docket # 18-8616