The biopolymer market has been expanding rapidly, but many biopolymer technologies rely on petroleum or conventionally derived agricultural feedstocks. In the coming decades, materials made from renewable sources are expected to gradually replace non-renewable petrochemical-based industrial materials, including polymers. The production of plastics from renewable biopolymers will offer several advantages over conventional petroleum-based plastic production. These advantages include having reliable (domestic) suppliers, sustainable production, lower greenhouse gas emissions, competitive pricing, and increased number of jobs in rural communities.
Researchers from Arizona State University have recently developed a new technology to produce biopolymers from autotrophic cyanobacteria that optimizes the production of biopolymer during the life-cycle of the organism. This technology uses CO2 from the environment, and unlike plant based biopolymer technologies, the production is compact and versatile, and does not compete with foodstocks. The researchers have found the technology can be used to produce a variety of high-value biopolymers, including Cyanophycin, Polyhydroxyalkanoates (PHA) and Poly(3-hydroxybutyrate).
Potential Applications
Benefits and Advantages
For more information about the inventor(s) and their research, please see Dr. Vermaas' departmental webpageDr. Vermaas' research webpage