Introduction
Most membrane proteins are not sufficiently abundant in nature to purify and crystallize, and gene expression systems have been unable to reliably express membrane proteins in sufficient quantities. The baculovirus expression vector system (BEVS) is one of the most widely used gene expression systems for eukaryotic proteins and is optimal for glycosylated protein expression in a cost-effective manner. BEVS has also been used to express some membrane proteins. Despite some success, however, many membrane proteins cannot be expressed at high enough levels for structural studies. One possible means for improving membrane expression using BEVS is to develop new cell lines with greater intrinsic ability for membrane protein synthesis.
Description of Technology
Michigan State University’s invention is a new cell line derived from Trichoplusia ni embryos for use in BEVS known as TnT4. TnT4 has favorable growth characteristics for use in BEVS and expresses a human neurotensin receptor 1 (NTSR1), a model G-protein coupled receptor with the ability to express membrane proteins at higher levels. TnT4 cells have been shown to express the membrane-GFP-fusion protein at approximately twice the level of Sf21 cells, as evaluated by GFP intensity. They are susceptible to infection by Autographa californica nucleopolyhedrovirus (AcMNPV) and support its complete lifecycle, producing both BV and polyhedra. The cell line develops rapidly and can be grown in suspension culture, providing favorable growth characteristics for both research and drug development.
Key Benefits
Applications
Licensing
This technology is licensed on a non-exclusive basis
Patent Status
U.S. Patent Issued: 8,383,402
Inventors
Suzanne Thiem
Tech ID
TEC2008-0034