This technology includes EPHX1/EPHX2 null mice and showed that disruption of both EPHX1 and EPHX2 almost completely abolished hydrolysis of several EETs which can be used in the treatment of cardiovascular diseases. EPHX 1 is significantly involved in EET hydrolysis, and we believe the combined use of EPHX1 and EPHX2 inhibitors would provide a better alternative to currently available therapeutic options or the EPHX2-based therapies currently in trials for the treatment of cardiovascular diseases.