Executive Summary
Photolithography is a standard method of forming electronic circuits in electronic devices. However, in some cases, this can be a expensive step in the fabrication process. MSU researchers have developed an inexpensive method of creating thin films with conductive surfaces using a combination of polyelectrolyte multilayer (PEM) coating on a substrate, and microcontact printing of conductive graphene nanoplatelets coated with a charged polymer. The method allows for conductive organic patterning on both flat and curved surfaces and can be used in microelectronic device fabrication.
Description of the Technology
The invention is based on graphene nanoplatelets deposited on the outer surface of a polyelectrolyte multilayer (PEM) thin film. The nanoplatelets themselves are coated to have either an anionic or cationic charge which attracts to the opposite charge of the PEM film. The polymer coated graphene particle is then patterned using microcontact printing on a substrate that has a surface charged oppositely to the graphene particle and allows for conductive organic patterning on both flat and curved surfaces which can be used in microelectronic device fabrication. The PEMs can be deposited on a wide variety of surfaces. For example, using microcontact printing, negatively charged graphene nanoparticles are transferred from a stamp to the positively charged outer surface. After rinsing, conductive patterns remain strongly bound on the surface.
Benefits
Applications
Patent Status
Issued US Patent US 9,023,478
Licensing Rights
Full licensing rights available
References
Adv. Matter Article, 2008
Inventors
Dr. Lawrence Drzal, Dr. Ilsoon Lee, Dr. Troy Hendricks, Dr. Jue Lu
TECH ID
TEC2007-0072