Inteum Company
Links
seedsprint
Visible Legacy
RSS
News & Resources
Inteum Company News
Inteum Library
Subscribe
Self-supervised Learning: From Parts to Whole
Case ID:
M20-240L^
Web Published:
1/24/2022
As machine learning grows and advances, contrastive representation learning continues to emerge as the state-of-the-art technique in computer vision. Contrastive representation learning, however, has major limitations that make it problematic for 3D medical imaging, such as requiring extensive mini-batch sizes, special network design, or memory banks. While reconstruction-based self-supervised learning shows promise, it lacks mechanisms to learn contrastive representation, making it is also unsuitable for 3D medical imaging.
Researchers at Arizona State University developed a novel algorithm to learn contrastive representation in 3D medical imaging. This framework for self-supervised contrastive learning via reconstruction is called Parts2Whole, because it exploits the universal and intrinsic part-whole relationship to learn contrastive representation without using contrastive loss. This self-supervised learning framework brings greater efficiency and computational capability for processing 3D medical images than has previously been achievable.
This algorithm was evaluated on five distinct imaging tasks covering classification as well as segmentation. It was compared with four competing available 3D pretrained models and outperformed in two out of five tasks with competitive performance on the remaining three.
Potential Applications
3D medical imaging
Self-driving vehicles
Educational assistance
Commercial image-based search
Facial recognition
Benefits and Advantages
Able to learn contrastive representation
Can utilize smaller batch sizes
No need for special network design
Does not require memory banks
Exceeded performance expectations during testing
Greater efficiency and computational feasibility
Leverages contrastive representation learning via the self-supervised learning framework
For more information about this opportunity, please see
Feng et al - MICCAI - 2020
For more information about the inventor(s) and their research, please see
Dr. Liang's departmental webpage
Patent Information:
Title
App Type
Country
Serial No.
Patent No.
File Date
Issued Date
Expire Date
Direct Link:
https://canberra-ip.technologypublisher.com/tech?title=Self-supervised_Learni ng%3a_From_Parts_to_Whole
Keywords:
Bookmark this page
Download as PDF
For Information, Contact:
Jovan Heusser
Director of Licensing and Business Development
Skysong Innovations
jovan.heusser@skysonginnovations.com